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IntroductionIntroduction

I t t l f P di ti U t i t (PU) fl d f ti d Important role of Predictive Uncertainty (PU) on flood forecasting and
decision making:
 Flow simulations and forecasting made from models are not error free

G i i i i i f di i / i l i Growing interest in assessing uncertainty of predictions/simulations
 Severe economic and social consequences derived from flood emergencies

 Developed methods and tools to assess flood forecasting uncertainty at Developed methods and tools to assess flood forecasting uncertainty at
gauging stations:
 Hydrologic Uncertainty Processor (Krzysztofowicz, 1999)
 Bayesian Model Averaging (Raftery 1993; Raftery et al 2003; 2005) Bayesian Model Averaging (Raftery, 1993; Raftery et al, 2003; 2005)
 Model Conditional Processor (Todini, 2008)
 And others statistical approaches…

 How to estimate PU at ungauged sites?
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IntroductionIntroduction

 Our proposal: Combining simulations of the hydrological distributed model TETIS
(Vélez et al, 2001; Francés et al, 2007) with the MISP technique (Mutually Interactive
State-Parameter Estimation) (Todini, 1978)
 Distributed models: advantage of simulating flows at any point throughout the

spatial domainspatial domain
 MISP is a Kalman filter based algorithm, which:

 Performs the state-parameter estimation of a discrete time dynamic system
Makes alternative use of two interacting filters in parallel both with minimum variance Makes alternative use of two interacting filters in parallel, both with minimum variance

 Filtering Scheme:
 Model predictions at an ungauged site are assumed as imperfect observations Model predictions at an ungauged site are assumed as imperfect observations

(as random variables)
 Incorporating observations and simulations at a gauging station as on-line

instrumental variables correlated with flow at the ungauged site
 Log transformation of all input data to improve Gaussian assumptions of the K.F.
 Inclusion of a cross covariance term in the covariance matrix of the

measurement error (assumption of spatially correlated errors)
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Hydrological model TETISHydrological model TETIS

 Developed at Technical University of Valencia since 1994
 Spatially distributed in regular cells

 Reproduces spatial variability of hydrological processes
 Reduces spatial scale effects with regard to lumped models Reduces spatial scale effects with regard to lumped models
 Allows to exploit all available physical and environmental spatial information

Flow

 Separate runoff modeling on slopes and channels

Hillslope Gully Main 
river

 Each tank drains into the topographical downstream corresponding tank.
 Drainage area thresholds defined for each type of tank

( )
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 Nonlinear channel routing scheme (geomorphologic kinematic wave).



Hydrological model TETISHydrological model TETIS

 Robust and parsimonious model:p
 Adequate simulation of initial state (includes

balance at all times)
 6 storage tanks (state variables) 6 storage tanks (state variables)
 5 external outflows (3 horizontal responses)

 Potential problem in distributed models: Potential problem in distributed models:
 Calibration of high number of parameters in each

cell from an outflow hydrograph.
 Proposed solution: Split Effective Parameters Proposed solution: Split Effective Parameters

Structure (Frances et al, 2007):

 Phase I: Parameter estimation from all physical iH )(

1u RiH )(

 Phase I: Parameter estimation from all physical
and environmental information at each cell

 Phase II: Global correction factors for each Calibration

u iH )(
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Production parameters at each cell (v 7)Production parameters at each cell (v.7)

 Vegetation cover index: (t) Crop factor
 Maximum static capacity: Hu Initial abstractions +

il ill itupper soil capillary capacity

 Overland flow velocity: v Hill slope stationary velocity
 Interflow velocity: kss Horizontal macropore upper soil permeability
 Base flow velocity: kb Upper aquifer permeability

 Infiltration capacity: ks Vertical upper soil permeability
 Percolation capacity: kp Vertical deep soil permeabilityp y p p p y
 Underground losses capacity: kpp Lower aquifer permeability
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Calibration ProcessCalibration Process

 Parameter estimation normally through comparison between simulated andy g p
observed values of some state variables
 Traditionally: Discharge at the basin outlet 0
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 Statistical Objective Functions:
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Mutually interactive parameter estimation 
(MISP)

 The first filter performs the minimum variance state estimation given the The first filter performs the minimum variance state estimation, given the
parameters set :

tttttt

vxHz

wxx



  1111 

where:
tttt vxHz 

xt:      State vector (nx1)
zt:      Measurement vector (mx1)
:      State transition matrix (nxn)
, H:  Compatibility matrices
vt, wt: Normal independent processes

 The second one performs the minimum variance parameter estimation,
given the state estimate, both at the present and previous time steps.

** w 

where:

*
tt

*
t

*
t

tttt

vHz
w



 



 111

t:  Parameter vector (px1)
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Mutually interactive parameter estimation 
(MISP)

 Equations required to accomplish a calculation cycle: Equations required to accomplish a calculation cycle:

 
1t1ttttt vx̂Hzv  
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Mutually interactive parameter estimation 
(MISP)

 Equations required to accomplish a calculation cycle: Equations required to accomplish a calculation cycle:

 
1t1ttttt vx̂Hzv  

1

State update:
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 The estimation of the state vector provided by the first filter ( ) is used as
observations in order to estimate the parameter vector 

T
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observations, in order to estimate the parameter vector .
 Optimality is reached after a series of runs through the historical data, as model

residuals become less and less correlated.
At th ti it i ibl t ti t th k i t ti ti RQ
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 At the same time, it is possible to estimate the unknown noise statistics: R,Q,v,w



MISP implementationMISP implementation

 System equations (matrix form):
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 Parameter equation:
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Case study: simulation at Baron ForkCase study: simulation at Baron Fork

 Distributed Model Intercomparison Project (DMIP2), NOAA/NWS.
 Series of experiments to guide NOAA/NWS research into advanced hydrologic

models for river and water resources forecasting.

 Study basins: Baron Fork river and Peacheater Creek (tributary)
 Complete description (Smith et al, 2004)
 Availability of cartographic information of physical and environmental parameters Availability of cartographic information of physical and environmental parameters
 Concurrent time series (1995-2002) of discharges, radar precipitation (NEXRAD),

temperature and ETP from Reanalysis (NCEP-NCAR)

 Basin areas
 Baron Fork: 795 km2 Ungauged Site (2) Baron Fork: 795 km
 Peacheater: 65 km2

Gauged Site (1)
Baron Fork at  Eldon

g g ( )
Peacheater Creek
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TETIS model calibrationTETIS model calibration

 Calibration results, Baron Fork at Eldon (oct/2001-sep/2002)
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TETIS model calibrationTETIS model calibration

 Calibrated correction factors (cell parameters) for the DMIP2 case study
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TETIS model validationTETIS model validation

 Temporal validation results, Baron Fork at Eldon (oct/1996-sep/2001)
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TETIS model validationTETIS model validation

 Spatial validation results, (Peacheater Cr. At Christie (oct/1996-sep/2002)

Statistical Index
BE (%): 9.3
RMSE (m3/s): 0.8840.0
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Results application of MISPResults, application of MISP 

 MISP results, Peacheater Cr. (oct/1996-sep/2002)

Statistical Index
BE (%) 9.3
RMSE (m3/s) 0.8340.0
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Results application of MISPResults, application of MISP 

 Peacheater Creek (15/03/2002 – 29/04/2002)
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Results application of MISPResults, application of MISP 

 Peacheater Creek, uncertainty bounds (15/03/2002 – 29/04/2002)
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Results application of MISPResults, application of MISP 

 Peacheater Creek (06/03/1999 – 17/05/1999)
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Results application of MISPResults, application of MISP 

 Peacheater Creek, uncertainty bounds (06/03/1999 – 17/05/1999)
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Results application of MISPResults, application of MISP 

 Peacheater Creek (15/06/2000 – 10/07/2000)
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Results application of MISPResults, application of MISP 

 Peacheater Creek, uncertainty bounds (15/06/2000 – 10/07/2000)
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ConclusionsConclusions

 A methodology based on the Kalman filter MISP algorithm is presented, aimed togy g p ,
improve predictions performed with a distributed hydrological model at ungauged sites
and to estimate the related predictive uncertainty.

 The observed and simulated discharges at the basin outlet are used as instrumental
variables in the Kalman filter implementation.

 Importance of including a cross covariance error term in matrix R.

 The results of the proposed approach are considered very satisfactory. The NSE was
improved from 0.67 to 0.71 for the Peacheater Creek (assumed as ungauged site).

 The Kalman filter based MISP approach allows assess the predictive uncertainty
i d h d l di i ( i l i f i d )associated to the model prediction (simulation or forecasting mode).

 The uncertainty band is strongly affected by model performance, and is expected that
i t f th d l ld d di ti t i ti
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any improvement of the model would reduce predictive uncertainties.
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